| er 2019 | |---| | | | | | tzenstein - Deterministically
ated quantum dot –
guide systems for on-chip
tum optics | | ffitti - Direct generation of
ed ultrafast entanglement | | fouz - InAsP quantum dot
wires for telecom single
on emission | | eller - Quantum teleportation
highly coherent emission
telecom C-band quantum dot | | | | manti - Demonstrating
cum advantage with practical
onic systems | | i - Experimental Quantum
hing for Exponentially
ior Quantum Communication
lexity | | zzolino - Hybrid entanglement
oution through an air-core | | liar - High-Dimensional Chip-
ip Entanglement Distribution
gh Multicore Fibres | | ranitaki - Nanowire Detection
otons from the Dark Side | | | | | | arbon - Massively parallel,
-dimensional photon
ing: a versatile tool for
tum experimentalists and
imers | | nca - Wide-area fast-gated
photon detector with
rated TDC for near-infrared
roscopy applications | | rbi - Silicon photomultipliers
ized for cryogenic
eratures | | sse - Single-Photon Detectors
on CSPAD technology | | | | centini - New Frontiers in
tum Measurement: Protective
urement, Genetic Quantum
urement and Robust Weak
urement | | Im - Certified Randomness
usion using a Loophole-Free
est | | unnilall - Investigations
ds transmitting time and QKE
s over the same optical fibre | | sota - Reliable estimation of
atistics of photons emitted
an unknown source of light | | | | | | campus | | | |) | | | Tuesday 22 Oc | tober 2019 | | |-------|-------------------------------|--|--| | | | | | | 09:00 | Historical perspective by Ser | | | | 09:15 | Session 5 - Detectors II | B. Korzh - Advances in
superconducting nanowire single
photon detectors and related
applications | | | | | V. Verma - Kilopixel arrays of
superconducting nanowire single-
photon detectors | | | | | D.H. Smith - Multiplexed
Superconducting Nanowire Single-
Photon Detectors on UV-Written
Silica Waveguides | | | | | A. Gaggero - SNSPD readout using
the amplitude multiplexing
approach | | | 10:45 | Coffee break | | | | 11:15 | Session 6 - Metrology II | S. Polyakov - First quantum-
measurement-inspired, scalable
communication protocol and its
experimental demonstration | | | | | S. Schwarz - Reconstructing
ultrafast energy-time entangled
two-photon pulses | | | | | D. Fuster - Development of a
plug&play single photon source
using electro-optical pumping | | | | | schemes
H. Ollivier - Quantum dot based
single photon sources: performance
reproducibility | | | 12:35 | Platinum sponsor presentation | | | | 12:40 | Lunch | | | | 13:55 | Session 7 - Applications II | M. Lucamarini - Measurement
Device Independent Quantum
Cryptography | | | | | M. Minder - Experimental quantum
key distribution beyond the
repeaterless secret key capacity | | | | | M. Avesani - Practical Source-
Device-Independent Quantum
random number generators | | | | | S. Wengerowsky - Entanglement
distirbution via a submarine fiber in
the Mediterranean | | | | | S. Wengerowsky - An entanglement
based wavelength-multiplexed
Quantum Communication Network | | | 15:45 | Platinum sponsor presentation | | | | 15:50 | Coffee break | | | | 16:20 | Session 8 - Applications III | K. Suhling - Time-correlated single
photon counting wide-field
Fluorescence Lifetime Imaging
Microscopy | | | | | G. Tortarolo - Towards Single-
Photon Microscopy: Exploiting
Extra Spatio-Temporal Information
Provided by SPAD Array Detectors
in Laser Scanning Microscopy | | | | | D. Tabakaev - Entangled two-
photon absorption and the
quantum advantage in sensing | | | | | A. Ingle - Towards General-Purpose
Passive Imaging with Single-Photon
Sensors | | | | | A. White - Realtime photon-number
resolution & Imaging via photon
counting | | | 18:10 | Poster session I | | | | 10.00 | | | | 19:30 End | | Wednesday 23 | + | | |-------|----------------------------------|--|--| | | | | | | | | | | | 09:00 | Session 9 - Applications IV | J. Matthews - Homodyne
detectors on-chip for large scale
silicon quantum photonics | | | | | F. Ceccarelli - Low-power
reconfigurable photonic integrated
circuits fabricated by femtosecond
laser micromachining
P. Connolly - Multispectral single- | | | | | photon imaging using high
efficiency plasmonic metasurface
filters | | | | | S. Olivier - Towards an integrated
quantum photonics platform on
silicon for secured communications | | | | | J. Renema - Imperfect Gaussian
Boson Sampling is Classically
Simulable | | | 10:50 | Coffee break | | | | 11:20 | Session 10 - Metrology III | I. Degiovanni - Light sources
characterisation and optical
modes reconstruction | | | | | YL. Mao - Error-Disturbance Trade
off in Sequential Quantum
Measurements | | | | | A. Paterova - Infrared metrology
with visible light | | | | | K. Laiho - Characterizing heralded
single photons from a Bragg-
reflection waveguide loss-tolerantly
via moment generating function | | | 12:50 | Platinum sponsor presentation | | | | 12:55 | Lunch | | | | 14:10 | Session 11 - Detectors III | B. Aull - Large-Format Image
Sensors Based on Integration of
Custom Geiger-Mode Avalanche
Photodiode Arrays with All-Digital
CMOS Circuits | | | | | CY. Park - Room temperature
operation of InP/InGaAs single
photon avalanche diode | | | | | G. Buller - Planar Geometry Ge-on-
Si Single-Photon Avalanche Diode
Detectors for the Short-Wave
Infrared | | | | | G. Acconcia - Fully integrated
electronics for high-performance
and high-speed acquisition with
Single Photon Avalanche Diodes | | | | | M. Salomoni - Future perspective of
SiPM technology | | | 16:00 | Coffee break | | | | 16:30 | Session 12 - Sources II | C.A. Solanas - Scalable interfacing o
quantum photonic platforms: solid-
state single-photon sources and
reconfigurable photonic circuits | | | | | T. Heindel - Single-Photon QKD
using Engineered Solid-State
Quantum-Light Sources | | | | | S.D. Tchernij - Electrical control of
Nitrogen – Vacancy centers in
diamond | | | | | S. Ecker - Overcoming noise in
entanglement distribution through
high-dimensional encoding | | | | Transfer to Castello Sforzesco | | | | | Guided tours of Castello Sformer | | | | | Dinner at Castello Sforzesc | Ī | | | 23:00 | | | | | | Thursday 24 O | 100001 2013 | | | |-------|---|---|--|--| | | | | | | | | | | | | | 09:00 | Session 13 - Sources III | C. Toninelli - Single-molecule
based single photon sources | | | | | | R. Schofield - Nanophotonic
waveguide coupling to organic
molecules in micro-capillaries | | | | | | H. Abudavveh - Quantum light | | | | | | manipulation: A path towards
efficient pure room-temperature
single photon sources | | | | | | H. Wang - Single photons for
quantum technologies | | | | | | C. P. Lualdi - High-Efficiency Time-
Multiplexed Single-Photon Source | | | | 10:50 | Coffee break | | | | | 11:20 | Session 14 - Applications V | K. Srinivasan - Quantum source
and frequency conversion
technologies based on integrated
nanophotonics | | | | | | J. Adcock - Programmable
mutliphoton graph states on a
silicon chip | | | | | | G. Kavuri - Towards a loophole-free
Bell experiment on a tabletop | | | | | | ZH. Xiang - Network Integration of
Quantum Dot Device and
Entanglement in Cambridge Fiber
Network | | | | 12:50 | Platinum sponsor presentation | | | | | 12:55 | Lunch | | | | | 14:10 | Session 15 - Detectors IV | S. W. Nam - From dark matter
detection to artificial intelligence:
applications of superconducting
nanowire single photon detectors | | | | | | M. Perrenoud - High detection rate
and high efficiency with parallel
SNSPDs | | | | | | S. Buckley - Progress in
superconducting optoelectronic
networks for neuromorphic | | | | | | Computing T. Takumi - Time-resolved measurement of a single-photon wave packet with an optical Kerr | | | | | | | | | | | | effect E. Fossum - Quanta Image Sensor Progress Review | | | | 16:00 | Coffee break | effect E. Fossum - Quanta Image Sensor | | | | | Coffee break Session 16 - Applications VI | effect E. Fossum - Quanta Image Sensor Progress Review | | | | | | effect E. Fostum - Quanta Image Sensor Progress Review S. Verghese - Self-driving cars and lider G. Musarra - Single-photon, single- pixel Intelligent Lidar | | | | | | effect E. Fostum - Quanta Image Sensor Progress Review S. Verghese - Self-driving cars and Iddar G. Musarra - Single-photon, single- pixel Intelligent Lidar A. Maczarone - Three dimensional maging of dynamic undervater scenes using single photon derection | | | | | | effect E. Fosuum - Quanta Image Sensor Progress Review S. Werghese - Self-driving cars and lidar A. Maczarone - Three dimensional maging of dynamic underwater concess using single photon detection detection detection - Depth imaging through obscurates using single photon detection detection - Depth imaging through obscurates using single photon detection - Depth imaging through obscurates using single photon detection - Depth imaging through obscurates using single photon detection - Depth imaging through obscurates to serve were detected. | | | | | | effect E. Fosuum - Quanta Image Sensor Progress Review S. Verghese - Self-driving cars and librar G. Musarra - Single-photon, single- pine intelligent Lidar A. Muscarone - Three dimensional imaging of dynamic underwater concess using single photon detection detection in the soft wave M. Laureness - Computational M. Laureness - Computational M. Laureness - Computational M. Laureness - Computational | | | | 16:30 | | effect E. Fostum - Quanta Image Sensor Progress Review S. Verghese - Self-driving cars and lidar G. Musarra - Single-photon, single- pinel intelligent tidar A. Maccarone - Three dimensional imaging of dynamic undervester scenes using single photon detection To desire - Self-driving proportions of the control of the control of the control To desire - Self-driving cars and detection To desire - Self-driving cars and detection in the short wase infrared M. Laurents - Computational | | | | Friday 25 October 2019 | | | | | |------------------------|-------------------------------|--|--|--| | | | | | | | | | | | | | 09:00 | Session 17 - Detectors V | J. Rothman - Reaching for GHz
single photon detection rates with
HgCdTe APD detectors | | | | | | L. Gasparini - CMOS-SPAD arrays fo
Quantum Imaging Applications | | | | | | M. Zarghami - A Novel Approach to
High Dynamic Range Imaging with
CMOS-SPADs | | | | | | G. Jegannathan - Current-assisted
single photon avalanche
diode(CASPAD) in 350 nm CMOS | | | | | | D. Starkey - Room Temperature
Photon-number-resolving Color
Imaging without Avalanche Gain | | | | 10:50 | Coffee break | | | | | 11:20 | Session 18 - Sources IV | P. Michler - Quantum dots at
telecom wavelengths for single-
and entangled photon sources | | | | | | S. Francesconi - Engineering two-
photon wavefunction and exchang
statistics in a semiconductor chip | | | | | | G. Solomon - Filter-free single-
photon emission in an integrated
cavity-waveguide device | | | | | | C. Marvinney - Toward control of
the quantum state of hBN single-
photon emitters | | | | | | J. Grim - Three-Quantum-Dot
Superradiance in a Photonic Crysta
Waveguide Enabled by Scalable
Strain Tuning | | | | 13:10 | Lunch | | | | | 14:15 | Session 19 - Applications VII | Q. Zhang - Single photon
technology in Long Distance
Quantum Communication | | | | | | ZD. Li - Experimental quantum repeater without quantum memor | | | | | | A. Scriminich - Hong-Ou-Mandel
interference of polarization qubits
stored in independent room-
temperature quantum memories | | | | | | S. Grandi - Towards long distance
entanglement between a photon
and a solid-state quantum memor | | | | | | M. F. Askarani - Entanglement and
non-locality between disparate
solid-state quantum memories
mediated by photons | | | | 16:05 | Concluding remarks | | | | | 16:15 | Farewell coffee | | | | | 16:45 | End | | | | ## Notes: Bold = invited talk, 30 min Regular = contributed talk, 20 min